4^a LISTA DE MECÂNICA QUÂNTICA I - PG (2015-1)

1. Considere uma partícula em um poço infinito de largura a, sujeita a uma perturbação

$$V = \alpha \, \delta \left(x - a/3 \right)$$

- (a) Calcule a correção em primeira ordem das energias. Identifique os níveis que não sofrem correções de primeira ordem e discuta fisicamente o porquê.
- (b) Calcule os três primeiros termos da correção de primeira ordem na função de onda do estado fundamental.
- 2. O hamiltoneano de um certo sistema é

$$H = \hbar\omega \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} + g \begin{bmatrix} 2 & 1 & 0 & -i & 2 \\ 1 & 0 & 2i & 0 & 0 \\ 0 & -2i & 0 & 0 & 2 \\ i & 0 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 & 1 \end{bmatrix},$$

onde o primeiro termo representa o hamiltoneano não perturbado e o segundo é a perturbação .

- (a) Calcule as correções de primeira e segunda ordem da energia do primeiro nível excitado.
- (b) Calcule a correção de primeira ordem dos autoestados do primeiro nível excitado.
- 3. Um oscilador harmônico simples em uma dimensão é sujeito a uma perturbação $V=g\,X$, onde g é uma constante real.
 - (a) Calcule a menor correção não nula para a energia do estado fundamental.
 - (b) Resolva o problema exatamente e compare a correção do item anterior com o que se obtem a partir da expansão da solução exata em potências de g.
- 4. Considere o um oscilador harmônico isotrópico em 2 dimensões, descrito pelo hamiltoneano

$$H_0 = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{m\,\omega^2}{2}\left(x^2 + y^2\right) \,.$$

Aplica-se a perturbação $V = g m \omega^2 x y$, onde g << 1. Obtenha a correção dos três primeiros níveis de energia até 2^a ordem em teoria de perturbação e os autovetores associados até 1^a ordem.

- 5. A interação spin-órbita em um átomo de hidrogênio é dada pelo termo $V = g \mathbf{L} \cdot \mathbf{S}$. Calcule as correções de 1a ordem da energia e dos autoestados correspondentes ao primeiro nível excitado. Mostre que a base de autovetores de \mathbf{J}^2 e J_z , onde $\mathbf{J} = \mathbf{L} + \mathbf{S}$, é naturalmente a base adequada à expansão perturbativa.
- 6. Considere um sistema de dois níveis cujos estados estacionários são $\{|1\rangle, |2\rangle\}$ com energias E_1 e $E_2 > E_1$, respectivamente. Aplica-se sobre o sistema a perturbação dada pela matriz $V(t) = g \cos \omega t \, \sigma_x$ na base $\{|1\rangle, |2\rangle\}$. Suponha que em t=0 o sistema é preparado no estado $|\psi(0)\rangle = |1\rangle$. Encontre a probabilidade de transição para o nível $|2\rangle$ como função do tempo, supondo que $E_2 E_1 \sim \hbar\omega$.
- 7. Uma partícula move-se em uma dimensão e sua energia é dada pelo hamiltoneano H_0 , cujas autofunções são $u_n(x) = \langle x | u_n \rangle$ com energias conhecidas. Aplica-se sobre a partícula a perturbação na forma de um pulso propagante com velocidade c, representado pelo termo de interação $V(t) = A \, \delta(x-ct)$.
 - (a) Suponha que em $t \to -\infty$ a partícula encontre-se no estado fundamental $|u_0\rangle$. Obtenha a probabilidade de transição para um estado final $|u_n\rangle$ quando $t \to +\infty$.
 - (b) Utilize a decomposição de Fourier da função delta

$$\delta(x - ct) = \frac{1}{2\pi c} \int_{-\infty}^{+\infty} d\omega \ e^{i\omega[(x/c) - t]} \ ,$$

e discuta a conservação da energia para tempos longos.